Biologic Therapies—Mechanisms of Action and Treatment Considerations

Seth Eisenberg, RN, OCN®
Professional Practice Coordinator, Infusion Services
Seattle Cancer Care Alliance
Seattle, WA
CE Credit in Four Easy Steps!

1. **Scan your badge** as you enter each session.

2. **Carry your Evaluation Packet to every session** so you can add session evaluation forms to it.

3. **Track your hours on the “Statement of Session Attendance Form”** as you go.

4. **At your last session, total the hours and sign both pages of your Statement of Session Attendance Form.**
 - Keep the **PINK** copy for your records.
 - Put the **YELLOW** and **WHITE** copies in your CE Envelope.
 - Make sure an Evaluation Form is in your CE Envelope for each session you attended. *Miss one? Extras are in a file near Registration.*
 - Fill out the information on the outside of the CE Packet envelope, seal it, and drop it in the box near Registration.

 - **Applying for Pharmacy CPE?** If you have not yet registered for an NABP e-Profile ID, please visit www.MyCPEmonitor.net to do so **before** submitting your packet. You must enter your NABP e-Profile ID in order to receive CE credit this year!
Speaker Disclosures

Seth Eisenberg has no conflicts of interest or financial disclosures to declare.

Clinical trials and off-label/investigational uses will discussed during this presentation in a fair an unbiased manner.
Chemotherapy Versus Biotherapy

• **Chemotherapy**
 – Affects rapidly dividing cells
 – Non-specific
 – Unable to differentiate between normal and malignant cells

• **Biotherapy**
 – Targets pathways, antigens, or surface markers on cells
 – Engineered to find a specific target
 – Can carry cytotoxic payload to a target
Not all targeted therapies are biologic

<table>
<thead>
<tr>
<th>Drug</th>
<th>Type</th>
<th>Clinical Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imatinib (Gleevec)</td>
<td>Tyrosine kinase Inhibitor</td>
<td>CML, GIST</td>
</tr>
<tr>
<td>Sunitinib (Sutent)</td>
<td>Multiple kinase inhibitor</td>
<td>Renal Cell Cancer</td>
</tr>
<tr>
<td>Sorafinib (Nexavar)</td>
<td>VEGF inhibitor</td>
<td>Lung Cancer</td>
</tr>
<tr>
<td>Vismodegib (Erivedge)</td>
<td>Hedgehog inhibitor</td>
<td>Basal Cell Carcinoma</td>
</tr>
<tr>
<td>Luprolide Acetate (Lupron)</td>
<td>LH-RH analog</td>
<td>Prostate Cancer</td>
</tr>
</tbody>
</table>
General Characteristics

• Act directly on the immune system
• Mimic naturally occurring proteins
• Can be genetically engineered
• Enhance or block biologic pathways
• Target specific surface markers on cells
Examples of Indications

• Non-oncologic immune disorders
 – Crohn’s disease
 – Psoriasis

• Oncologic diseases
 – Lymphomas
 – Melanoma
 – Breast cancer
 – Prevention and treatment of Acute Graft Versus Host Disease

• Anti-viral
 – Hepatitis C
Targeted Therapy = Magic Bullet?

• Many agents can accurately reach their target
• Reaching target does not always equate with cure or achieving desired effect(s)
• Significant side-effects related to:
 – Complex up or down-regulation of pathways
 – Cytokine Release Syndrome
 – Unintentional blockade of desirable biologic mechanisms
Complex Signaling Pathways
RANKL Signaling Pathway

www.wikipathways.org/index.php/Pathway:WP382
When the target fights back

- 2006 Phase I study of TGN 1412
- CD28 MAb, able to active T-cells without prior activation of T-cell receptors
- Potential use for rheumatoid arthritis and lymphoma
- No anticipated side effects based on animal models
When the target fights back

• Given simultaneously to 6 healthy volunteers
• Within 1 hour after the infusion, all 6 became critically ill due to a “cytokine storm”
• Later analysis hypothesized the reaction was due to lack of CD28 expression on the CD4+ T-cells in animal models but is expressed in humans
Types of Biotherapy

• Cytokines
 – Interleukins
 – Interferons
 – Chemokines
 – Growth Factors

• Fusion Proteins

• Monoclonal Antibodies
 – Naked
 – Conjugated
Cytokines

• Polypeptide Proteins
• Chemical messengers
• Released transiently under normal circumstances
• Action
 – Autocrine (act on the cell which secreted it)
 – Paracrine (act on nearby cells) (e.g., IL-6, TGF-β in melanoma).
 – Endocrine (act on distance cells)
Cytokines

• Produced by lymphocytes, fibroblasts, endothelial cells, mast cells
• Stimulate the release of other cytokines (e.g., chemokines)
• Activate lymphocytes
• Increased production during times of emotional stress or during infection
• Utilize JAK-STAT and nuclear factor kappa β pathways

Cytokines

• Stimulate the production of
 – endothelial leukocyte adhesion molecule 1
 – vascular cell adhesion molecules

• Release
 – Prostaglandins (lipid compounds)
 – Leukotrienes (inflammatory mediators)
 – Proteases (proteolytic enzymes)

• Stimulation or inhibition of cytokines can have widespread effects due to interdependent pathways
Cytokines

• Many are pro-inflammatory:
 – IL-1 (considered the inflammatory gatekeeper)
 – IL-2
 – IL-6
 – TNFα
• Pro-inflammatory cytokines are implicated in a number of diseases:
 – Crohn’s disease
 – RA
 – Asthma
 – Psoriasis
Cytokines

• TGF-β can be pro-inflammatory or anti-inflammatory
 – Anti-inflammatory when
 • secreted in the gut (to protect GI flora)
 • promoting wound healing
 – Pro-inflammatory related to B-cell activation and numerous interleukin-dependent pathways
• IL-4 and IL-10 are anti-inflammatory
Cytokines

• Tumor Necrosis Factor (TNFα and TNFβ)
 – Primarily produced by macrophages
 – Role in
 • inflammation
 • Immune system regulation and initial response to infection
 • Tumor growth and apoptosis inhibition
 – Potential antineoplastic therapy
TRAIL

- TNF-related apoptosis-inducing ligand (TRAIL)
 - Traditional chemotherapy induces apoptosis via the intrinsic pathway, which can result in resistance
 - Extrinsic pathway promotes apoptosis in cancer cells (sparing normal cells)
 - Exploits “death receptors” on cell surface
 - TRAIL can be potentiated by certain agents, including the proteasome inhibitor bortezomib

Sayers, T (2011); Wu GS (2009).
Interferons

• Properties:
 – Immunomodulatory
 – Antiproliferative
 – Antiangiogenic
 – Antiviral

• 3 major subtypes differentiated by their target receptors

Wilkes, G (2010); Coondoo, A (2011)
Interferons

• Type I: Alpha (α) and Beta (β)
 – Inhibit viral replication
 – Produced by hematopoietic progenitor cells and fibroblasts

• Type II: Gamma (γ)
 – Activates T-cells
 – Upregulates NK cells
 – Regulates B-cell function

• Type III: Lambda (λ) or IL-28A, IFN λ 2 or IL-28B, and IFN- λ 3 or IL-29
 – Modest antiviral activity
Interferon Pathways

• Modulate NK cells and macrophages
• Interact with cytokines:
 – IL-1
 – IL-2
 – IL-6
 – IL-8
 – TNF
FDA Approved Interferons

- 5 commercial products
- 4 are genetically engineered from Escherichia coli bacterium
- 1 (IFN alfa-n3) is derived from human leukocytes partially infected with the avian Sendai virus
FDA Approved Interferons

<table>
<thead>
<tr>
<th>IFN subtypes</th>
<th>Route</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peginterferon alpha-2a (Pegasys)</td>
<td>SC</td>
<td>Hepatitis B and C</td>
</tr>
<tr>
<td>Interferon alfa-2b (Intron® A)</td>
<td>SC</td>
<td>Hairy cell leukemia, melanoma, sarcoma, hepatitis B & C, AIDS-related Kaposi's</td>
</tr>
<tr>
<td>Interferon alfa-n3 (Alferon N)</td>
<td>IL</td>
<td>Human papilloma virus genital warts</td>
</tr>
<tr>
<td>Interferon beta-1b (Betaseron®)</td>
<td>SC</td>
<td>Multiple sclerosis</td>
</tr>
<tr>
<td>Interferon gamma-1B (Actimmune)</td>
<td>SC</td>
<td>Chronic granulomatous disease, and malignant osteoporosis</td>
</tr>
</tbody>
</table>
Interferon side effects

• Flu-like symptoms (fever, chills, headache, fatigue)
 – Premed with acetaminophen
• Capillary Leak Syndrome
• Neurologic/Psychiatric (neuropathy, confusion, anxiety, depression, suicidal behavior)
 – Premedication with paroxetine can be beneficial
• Myelosuppression
• Infection
• Injection site reactions
Interleukins (ILs)

- A family of glycoproteins
- 37 different ILs produced in the human body
- IL-1: proinflammatory cytokine
 - Referred to as the cytokine “gatekeeper”; implicated in RA, psoriasis
- IL-2: proinflammatory cytokine
 - Causes proliferation of T and B cells, differentiation of NK cells; implicated in x-linked SCID
IL-1: Inflammatory Gatekeeper

<table>
<thead>
<tr>
<th>Physiologic</th>
<th>Inflammation</th>
<th>Hematologic</th>
<th>Immunologic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever</td>
<td>↑ COX-2</td>
<td>↑ Neutrophils</td>
<td>B-cell activation</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>↑ VEGF</td>
<td>↑ Phagocytosis</td>
<td>T-cell activation</td>
</tr>
<tr>
<td>Shock</td>
<td>↑ Chemokines</td>
<td>↑ GCSF</td>
<td>NK cell activation</td>
</tr>
<tr>
<td></td>
<td>↑ TNF</td>
<td>↑ IL-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>↑ IL-2</td>
<td>↑ Fibroblasts</td>
<td></td>
</tr>
</tbody>
</table>

Dinarello, C (2011) 3/27/2013
FDA Approved Interleukins

• IL-2 Aldesleukin
 – Proleukin®

• IL-11 Oprelvekin
 – Neumega™

• IL-1 Antagonist Anakinra
 – Kineret®
IL-2 Proleukin®

• A recombinant lymphokine
• Stimulates endogenous production of
 – Natural Killer Cells (NK)
 – Cytotoxic T Cells (CTC)
 – Lymphokine Activated Kinase (LAK) Cells, Macrophages
 – IL-4
 – IL-5
 – IL-6
IL-2 Proleukin®

• Administered IV
• Indicated for the treatment of
 – metastatic melanoma
 – renal cell cancer
IL-2 Proleukin®

- Side effects:
 - Hypotension
 - Fluid retention
 - Capillary leak syndrome
 - Pulmonary edema
 - Flu-like symptoms (fever, chills, malaise)
 - Depression
 - Exacerbation of pre-existing autoimmune diseases
 - Delayed reaction to iodinated contrast media
IL-11 Neumega™

• A thrombopoietic growth factor

• Stimulates the proliferation of stem cells and megakaryocytes to increase platelet production

• Administered SC

• Indicated for the prevention of severe thrombocytopenia in high-risk patients receiving chemotherapy
IL-11 Neumega™

• Side effects:
 – Anaphylaxis (with subsequent doses)
 – Atrial arrhythmias
 – Pulmonary edema
 – Dyspnea
 – Peripheral edema
 – Capillary leak syndrome
 – Potentially fatal hypokalemia
IL-1 antagonist Kineret®

• Modified form of human interleukreceptor antagonist (IL-1Ra)
• Competitively inhibits IL-1 binding to the IL-1 receptor
• Administered SC
• Indicated for reducing symptoms of moderate to severe rheumatoid arthritis
IL-1 antagonist Kineret®

- Side Effects:
 - Injection site reactions
 - Infection
 - 3.6x higher risk of lymphoma
IL-1 Properties

<table>
<thead>
<tr>
<th>Inflammation</th>
<th>Hematologic</th>
<th>Immunologic</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑ COX-2</td>
<td>↑ Neutrophils</td>
<td>B-cell activation</td>
</tr>
<tr>
<td>↑ VEGF</td>
<td>↑ Phagocytosis</td>
<td>T-cell activation</td>
</tr>
<tr>
<td>↑ Chemokines</td>
<td>↑ GCSF</td>
<td>NK cell activation</td>
</tr>
<tr>
<td>↑ TNF</td>
<td>↑ IL-6</td>
<td></td>
</tr>
<tr>
<td>↑ IL-2</td>
<td>↑ Fibroblasts</td>
<td></td>
</tr>
</tbody>
</table>
Chemokines

• 52 naturally occurring chemokines have been identified
• Specialized cytokines that produce chemotaxis (cell migration) in
 – Neutrophils
 – Lymphocytes
 – Fibroblasts
 – keratinocytes
• Activate white blood cells (inflammatory response)
• Assist with immune surveillance and hematopoiesis
Plerixafor (Mozobil®)

• Inhibits the CXCR4 chemokine receptor and blocks binding of its stromal cell-derived factor-1α (SDF-1α)
• CXCR4 helps anchor stem cells to the marrow matrix
• Administered SC
• Indicated for enhancing peripheral blood stem cell mobilization in conjunction with GCSF (filgrastim) for
 – Multiple myeloma
 – Non-Hodgkin's lymphoma
Plerixafor (Mozobil®)

• Side effects:
 – Injection site reactions
 – Nausea/Vomiting
 – Diarrhea
 – Fatigue
 – Headache
Fusion Proteins

• Consist of a protein component (i.e., IgG) plus an immunotoxin or cytokine agonist / antagonist

• Examples:
 – Etanercept
 – Romiplostim
 – Denileukin diffitox
Etanercept (Embrel®)

• Tumor necrosis factor receptor (TNFR) fusion protein which blocks TNF-α and TNF-β

• TNF-α plays a role in
 – chronic inflammatory diseases
 – normal immune protection
Etanercept (Embrel®)

• Administered SC

• Indicated for:
 – Moderate to severe rheumatoid arthritis
 – Plaque psoriasis
 – Psoriatic or Juvenile Idiopathic Arthritis
 – Ankylosing spondylitis
Etanercept (Embrel®)

• Side effects:
 – Injection site reactions
 – Severe infection
 – Potentially permanent central nervous system demyelinating disorders
 – Increased mortality in patients with cardiac disease
 – 3x higher risk of lymphoma
Romiplostim (Nplate™)

• An Fc-peptide fusion protein

• Increases platelet production by activating thrombopoietin (TPO) cytokine receptor pathways

• FDA approved for the treatment of ITP (idiopathic thrombocytopenic purpura) in patients at high risk of bleeding
Romiplostim (Nplate™)

• Administered SC

• Side effects:
 – Bone marrow reticulin deposition
 – Thromboembolism
 – Increased risk of hematologic malignancy
 – Headache, dizziness, insomnia

• Restricted distribution
Denileukin diffitox (Ontak®)

- CD25-directed fusion protein conjugated with diphtheria toxin
- Administered IV
- Indicated for persistent or recurrent cutaneous T-cell lymphoma expressing the CD25 component of the IL-2 receptor
Denileukin diftitox (Ontak®)

• Side effects:
 – Capillary leak syndrome (common)
 – Fever and chills
 – Nausea and vomiting
 – Rash

• Fewer reactions seen with subsequent doses
MONOCLONAL ANTIBODIES
Monoclonal Antibodies

• Immunoglobulins which target cell surface antigens

• Consist of 4 polypeptides:
 – Two heavy chains
 – Two light chains

• The variable region provides antigen specificity

• The constant region determines the mechanism for destroying the antigen
Monoclonal Antibodies

• Target a specific antigen (e.g., CD20)
 (CD = Clusters of Differentiation)

• Monoclonal antibodies are exact copies of a single genetically engineered clone

• This allows for the production of large quantities of antibodies
Monoclonal Antibodies

- Initially only produced using murine hybridoma technology
- First commercial MAb (1985) muromonab (OKT3)
- Can be “naked” or conjugated
- Produced in Chinese Hamster Ovaries (CHO)
- Most newer mAbs are humanized or fully human
Naming Conventions

• The type or source can be identified by the middle syllable in the generic name

<table>
<thead>
<tr>
<th>Gen</th>
<th>Murine</th>
<th>Type</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>100%</td>
<td>Fully murine</td>
<td>Tositu-mo-mab (-mo)</td>
</tr>
<tr>
<td>II</td>
<td>25%</td>
<td>Chimeric</td>
<td>Ritu-xi-mab (-xi)</td>
</tr>
<tr>
<td>III</td>
<td>15%</td>
<td>Humanized</td>
<td>Trastu-zu-mab (-zu)</td>
</tr>
<tr>
<td>IV</td>
<td>0%</td>
<td>Fully human</td>
<td>Panitu-mu-mab (-mu)</td>
</tr>
</tbody>
</table>
Monoclonal Antibodies

- Chimeric (25%) (rituximab)
- Humanized (15%) (trastuzumab)
- Human (panitumumab)

Murine portion Human portion

©2011 S.Eisenberg
Types of MABs by year

Eisenberg, S (2012); Data from Nelson, AL (2010)
Conjugated Monoclonal Antibodies

• Linked to a pharmaceutical toxin or radioactive isotope
• Deliver “payload” directly to targeted cell
• Examples:
 – Gemtuzumab ozogamicin* (Mylotarg™)
 – Brentuximab vendotin (Adcetris™)
 – Ibritumomab tiuxetan (Zevlin™)

* Withdrawn from market in 2010
25 Commercially Available mAbs

<table>
<thead>
<tr>
<th>Abicizimab</th>
<th>Ibritumomab tiuxetan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adalimumab</td>
<td>Infliximab</td>
</tr>
<tr>
<td>Alemtuzumab</td>
<td>Ipilimumab</td>
</tr>
<tr>
<td>Basiliximab</td>
<td>Natalizumab</td>
</tr>
<tr>
<td>Melimunab</td>
<td>Ofatumumab</td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>Palivizumab</td>
</tr>
<tr>
<td>Brentuximab vendotin</td>
<td>Panitumumab</td>
</tr>
<tr>
<td>Certolizumab pegol</td>
<td>Rituximab</td>
</tr>
<tr>
<td>Cetuximab</td>
<td>Tocilizumab</td>
</tr>
<tr>
<td>Daclizumab</td>
<td>Tositumomab</td>
</tr>
<tr>
<td>Denosumab</td>
<td>Trastuzumab</td>
</tr>
<tr>
<td>Ecluzumab</td>
<td>Ustekinumab</td>
</tr>
<tr>
<td>Golimumab</td>
<td></td>
</tr>
</tbody>
</table>

Eisenberg, S (2012)
Approved Indications

<table>
<thead>
<tr>
<th>Autoimmune</th>
<th>Oncology</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatoid arthritis</td>
<td>Chronic lymphocytic lymphoma</td>
<td>Cardiac ischemic prophylaxis</td>
</tr>
<tr>
<td>Psoriatic arthritis</td>
<td>Melanoma</td>
<td>Renal transplant rejection</td>
</tr>
<tr>
<td>Juvenile idiopathic arthritis</td>
<td>Renal Cell cancer</td>
<td>Skeletal-related events (metastatic)</td>
</tr>
<tr>
<td>Plaque arthritis</td>
<td>Colorectal cancer</td>
<td>Paroxysmal nocturnal hemoglobinuria</td>
</tr>
<tr>
<td>Ankylosing spondylitis</td>
<td>Breast cancer</td>
<td>Atypical hemolytic uremic syndrome</td>
</tr>
<tr>
<td>Crohn’s Disease</td>
<td>Non-small cell lung cancer</td>
<td>Multiple sclerosis</td>
</tr>
<tr>
<td>Ulcerative colitis</td>
<td>Glioblastoma</td>
<td>RSV prophylaxis</td>
</tr>
<tr>
<td>Asthma</td>
<td>Hodgkin’s lymphoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Squamous cell carcinoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-cell lymphoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low grade follicular lymphoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gastric cancer</td>
<td></td>
</tr>
</tbody>
</table>

Eisenberg, S (2012)
To be effective, the mAb must

• Avoid immune clearance
• Identify and bind to the target
• Destroy the cell expressing the antigen, or recruit other cells
• Be able to unlink the payload from conjugated mAbs
Monoclonal Antibodies

COMMON SIDE EFFECTS
Allergic hypersensitivity

- IgE-mediated reactions, usually to the non-human portion
- Requires prior exposure (although cross-reactivity has been demonstrated with cetuximab)
- Causes the release of histamine, leukotrienes, and prostaglandins and the degranulation of mast cells
- Results in symptoms of anaphylaxis:
 - smooth muscle contraction
 - capillary dilation with increased vascular permeability
 - urticaria and rash,
 - angioedema, bronchospasm, and hypotension
Cytokine Release Syndrome (CRS)

• Can be mild or potentially fatal (cytokine storm)
• Caused by release of both endogenous cytokines and those from damaged tumor cells
 – TNF-α
 – IFN-γ
 – IL-8
 – IL-6
• Symptoms are very similar to allergic reactions and may be difficult to differentiate

Chung, C (2008); Vultaggio, A et al (2011)
Cytokine Release Syndrome (CRS)

- Reaction rates for same drug can vary depending on
 - specific disease
 - disease burden

- Decreases with subsequent doses
 - Reactions to subsequent dose of trastuzumab are very rare

Lisander, J (2011); Atmar, J (2010); Lang, D (2011); Lang, D (2012); Chiang, J (2010); Al Zahrani, A (2009); Tuthill, M (2009)
CRS Symptoms

- Hypersensitivity reactions
- Arthalgias
- Bronchospasm, cough or dyspnea
- Fever and chills
- Fatigue
- Hypertension, hypertension, tachycardia
- Nausea/vomiting
- Dermatologic manifestations (pruritus, rash)
Prevention

• Premedication
 – Diphenhydramine
 – Acetaminophen
 – Steroids
General Interventions

• Stop the infusion
• Get help
• Assess ABCs
• Maintain vascular access with normal saline
• Obtain order for:
 – Diphenhydramine
 – A corticosteroid
 – Epinephrine
• Monitor vital signs (including oxygen saturation)
Epinephrine
Position Patient
Administer Oxygen
Administer IV Fluids
Administer Nebulizer
Administer vasopressors, antihistamines or corticosteroids

“Anaphylaxis pyramid”
SELECTED MONOCLONALS
Rituximab (Rituxan®)

- First widely successful mAb
- Targets CD20 positive B lymphocytes
- The Fab domain binds to the CD20 antigen and the Fc domain recruits cytotoxic cells
- Indicated for
 - Lymphoma
 - CLL
 - RA
Rituximab (Rituxan®)

- Administered IV
- First dose slow titration
- Infusion reactions (77% of first doses) but can be disease dependent
- Several published studies now demonstrate the safety of 60-90 minute rituximab infusions for subsequent doses

Lisander, J (2011); Atmar, J (2010); Lang, D (2011); Lang, D (2012); Chiang, J (2010); Al Zahrani, A (2009); Tuthill, M (2009)
Alemtuzumab (Campath®)

• Targets CD52 positive B lymphocytes
• Binds to healthy T cells, B cells, NK cells, and granulocytes
• Indicated for Chronic Lymphocytic Leukemia
• Administered IV by increasing subsequent doses until maximum is reached
Alemtuzumab (Campath®)

• Side effects:
 – Infusion reactions (89% of first doses)
 – Serious fatal infections due to severe prolonged cytopenias
 – Requires prophylaxis for PCP and herpes
Trastuzumab (Herceptin®)

- Anti HER2-neu mAb
- Indicated for treatment of HER2-neu positive breast and gastric cancer
- Administered IV
- Side effects:
 - Congestive heart failure
 - Initial dose infusion reactions (fever, chills, n/v)
 - Pulmonary toxicity
Cetuximab (Erbitux®)

• An epidermal growth factor receptor (EGFR) antagonist
• Administered IV
• Indicated for treatment of colorectal and head & neck cancer
• Side effects:
 – Infusion reactions (up to 22% despite premedication)
 – Higher reaction rates in some states including Tennessee and N. Carolina
 – Acneform rash (88%)
 – Cardiopulmonary arrest
• Test-doses may be of some clinical use
Bevacizumab (Avastin®)

• A vascular endothelial growth factor (VEGF) –specific angiogenesis inhibitor

• Indicated for
 – metastatic colorectal cancer
 – lung cancer
 – glioblastoma
 – metastatic renal cell cancer

• Administered IV
Bevacizumab (Avastin®)

- Side effects:
 - Epistaxis
 - Headache
 - Hypertension
 - Impaired wound healing
 - Proteinuria
 - Taste alteration
 - Dry skin
Brentuximab vedotin (Adcetris®)

• CD30 antibody conjugate with the chemotherapeutic agent MMAE (monomethyl auristatin E)

• Indicated for:
 – Hodgkin’s lymphoma for patients who have failed ASCT or 2 other therapies
 – Large cell lymphoma after failure of 1 multi-drug regimen

• Administered IV
Brentuximab vedotin (Adcetris®)

• Side effects:
 – Neuropathy (sensory and peripheral)
 – Anaphylaxis
 – Neutropenia
 – Fatigue
 – URI
 – Nausea/Vomiting/Diarrhea
 – Rash
 – Tumor lysis syndrome
Ipilimumab (Yervoy™)

• Human cytotoxic T-lymphocyte antigen 4 (CTLA-4)-blocking antibody

• Blockade of CTLA-4 has been shown to augment T-cell activation and proliferation

• Indicated for unresectable or metastatic melanoma

• Administered IV
Ipilimumab (Yervoy™)

• Side effects:
 – Life-threatening enterocolitis with severe diarrhea
 – Immune-mediated dermatitis (e.g., Stevens-Johnson Syndrome, TEN)
 – Immune-mediated hepatitis
 – Fatigue
Panitumumab (Vectibix®)

- An epidermal growth factor receptor antagonist
- Indicated for metastatic colorectal carcinoma
- Administered IV
- Side effects:
 - Dermatologic toxicities (90%) [includes acneform rash]
 - Infusion reactions (~4%) [pre-medication is not indicated]
 - Hypomagnesemia
Infliximab (Remicade®)

• Binds with TNFα and inhibits TNFα and receptors

• Indicated for:
 – Crohn’s disease
 – Ulcerative colitis
 – Rheumatoid arthritis, Psoriatic arthritis
 – Ankylosing spondylitis
 – Plaque psoriasis
Infliximab (Remicade®)

• Administered IV
• Side effects:
 – Serious infection
 – Increased risk of lymphoma and other malignancies
 – Hepatotoxicity and HEP B reactivation
 – Hypersensitivity reactions
 – Serum sickness
 – Increased mortality in patients with pre-existing CV disease
Denosumab (Xgeva™)

• RANK ligand (RANKL) inhibitor
• Indicated for prevention of skeletal-related events in patients with bone metastases
• Administered SC
• Side effects:
 – Severe hypocalcemia
 – Osteonecrosis of the jaw
Summary

• Biologic Therapy includes a diverse group of agents
• Proven efficacy for malignant and non-malignant diseases
• Produce a variety of potentially lethal and serious non-lethal side effects